
Stephen Checkoway

Programming Abstractions
Week 7-1: MiniScheme Interpreter

Project overview

In the next few homeworks, you'll write a small Scheme interpreter

The project has two primary functions

‣ (parse exp) creates a tree structure that represents the expression exp

‣ (eval-exp tree environment) evaluates the given expression tree
within the given environment and returns its value

We need a way to represent environments and we need some way to
manipulate them

Environments

Environments are used repeatedly in eval-exp to look up the value bound to a
symbol

There are two functionalities we need with environments

The first is we want to look up the value bound to a symbol; e.g., 
(let ([x 3])  
 (let ([x 4])  
 (+ x 5)))  

should return 9 since the innermost binding of x is 4

Environments

Second, we need to produce new environments by extending existing ones 
(let ([x 3])  
 (+ (let ([x 10])  
 (* 2 x))  
 x))  
evaluates to 23

‣ If E0 is the top-level environment, then the first let extends E0 with a binding
of x to 3

‣ If E1 is the new environment, we write E1 = E0[x ↦ 3]

‣ The second let creates a new environment E2 = E1[x ↦ 10]

‣ The (* 2 x) is evaluated using E2

‣ The final x is evaluated using E1

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up x in E0 and E1?

A. E0: 10  
E1: 10

B. E0: 8 
E1: 8

C. E0: 10  
E1: 8

D. E0: 8 
E1: 10

E. E1 can't exist because z isn't
bound in E0

5

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up y in E0 and E1?

A. E0: 23  
E1: 23

B. E0: 23  
E1: error: y isn't bound in E1

C. It's an error in both because since y isn't bound in E1, it's not bound in
E0 any longer

D. None of the above

6

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up z in E0 and E1?

A. E0: 0 
E1: 0

B. E0: error: z isn't bound in E0  
E1: 0

C. None of the above

7

Extending environments

There are only two places where an environment is extended

Extending environments
Procedure call

The first is a procedure call  
(exp0 exp1 … expn)

exp0 should evaluate to a closure with three parts

‣ its parameter list;

‣ its body; and

‣ the environment in which it was created, i.e., the environment at the time the
(λ …) that created the closure was evaluated

The other expressions are the arguments

The closure's environment needs to be extended with the parameters bound to
the arguments

Extending environments
Procedure call

For example imagine the parameter list was '(x y z) and the arguments
evaluated to 2, 8, and '(1 2)

If E is the closure's environment, then the closure's body should be evaluated
with the environment  

E[x ↦ 2, y ↦ 8, z ↦ '(1 2)]

Extending environments
Let expressions

The other situation where we extend an environment is a let expression

Consider 
(let ([x (+ 3 4)]  
 [y 5]  
 [z (foo 8)])  
 body)

We have three symbols x, y, and z and three values, 7, 5, and whatever the
result of (foo 8) is, let's say it's 12

If E is the environment of the whole let expression then the body should be

evaluated in the environment E[x ↦ 7, y ↦ 5, z ↦ 12]

Extending environments

In both cases we have

‣ A list of symbols

‣ A list of values

‣ A previous environment we're extending

This suggests a way to make an environment data type as a list:

('env syms vals previous-env)

and a constructor

(define (env syms vals previous-env)  
 (list 'env syms vals previous-env))

Environment data type

Constructor for extending an environment (some error checking omitted)  
(define (env syms vals previous-env)  
 (list 'env syms vals previous-env))

The top-level environment doesn't have a previous environment so let's use
model it as extending an empty environment  
(define empty-env null)

The top-level environment can now be  
(define top-level-env  
 (env syms vals empty-env))

Looking up a binding
(env-lookup environment symbol)

Looking up x in an environment has two cases

If the environment is empty, then we know x isn't bound there so it's an error

Otherwise we look in the list of symbols of an extended environment

‣ If the symbol x appears in the list, then great, we have the value

‣ If the symbol x doesn't appear, then we lookup x in the previous environment

The main task of this first MiniScheme homework is to write env-lookup

We need some recognizers for our env

; Environment recognizers.

(define (env? e)

 (or (empty-env? e) (extended-env? e)))

(define (empty-env? e)

 (null? e))

(define (extended-env? e)

 (and (list? e)

 (not (null? e))

 (eq? (first e) 'env)))

We need a way to access the env fields

(define (env-syms e)

 (cond [(empty-env? e) empty]

 [(extended-env? e) (second e)]

 [else (error 'env-syms "e is not an env")]))

(define (env-vals e)

 (cond [(empty-env? e) empty]

 [(extended-env? e) (third e)]

 [else (error 'env-vals "e is not an env")]))

(define (env-previous e)

 (cond [(empty-env? e) (error 'env-previous "e has no previous env")]

 [(extended-env? e) (fourth e)]

 [else (error 'env-previous "e is not an env")]))

Grammars

Alphabets and words

An alphabet Σ is a finite, nonempty set of symbols

‣ {0, 1} is a binary alphabet

‣ The set of emoji is an alphabet

‣ The set of English words is an alphabet

A word (also called a string) w over an alphabet Σ is a finite (possibly-empty)
sequence of symbols from the alphabet

‣ The empty word, !, consisting of no symbols is a word over every alphabet

‣ 001101 is a word over {0, 1}

‣ ⭐""#$% is a word over the emoji alphabet

‣ functional programming is great is a word over English

Let Σ = {⭐, ", #, $, %} be an alphabet. Which of the following describe a

word over Σ?

1. the three symbols """ 

2. the string consisting of 150 million % followed by $ (i.e., %%...% $)  

3. the infinite sequence consisting of alternating # and ⭐ (i.e., # ⭐ # ⭐…)

A. None

B. Only 1

C. 1 and 2

D. 2 and 3

E. 1, 2, and 3

19

Languages

A language is a (possibly infinite) set of words over an alphabet

There's a whole lot we can do studying languages as mathematical objects

We're not going to do that in this course, take theory of computation to find out
more!

Let Σ = {⭐, ", #, $, %} be an alphabet. Which of the following describe a

language over Σ?

1. the empty set  
2. the string #$"% 

3. the infinite set consisting of words over Σ with an equal number of " and

% symbols

A. None

B. Only 1

C. 1 and 2

D. 1 and 3

E. 1, 2, and 3

21

Programming languages

For a given programming language (like Scheme) the alphabet is the set of
keywords, identifiers, and symbols in the language

‣ This is a bit of a simplification because there are infinitely many possible
identifiers but alphabets must be finite

A word (or string) over this alphabet is in the programming language if it is a
syntactically valid program

Syntactically valid?

Consider the invalid Scheme program  

(let ([x 5]  
 [y 32])  
 (+ z 2))

This is syntactically valid (i.e., it's a word in the Scheme language) but
semantically meaningless as we don't have a binding for the identifier z

Grammars

A grammar for a language is a (mathematical) tool for specifying which words
over the alphabet belong to the language

(Grammars are very old, dating back to at least Yāska the 4th c. BCE)

Grammars are often used to determine the meaning of words in the language

Grammars
Example: a+b*c

Consider the arithmetic expression a+b*c as a word over the alphabet
consisting of variables and arithmetic operators

‣ We can write many different grammars that will let us determine if a given
word is a valid expression (i.e., is in the language of valid expressions)

‣ With a careful choice of grammars we can determine that this means a+(b*c)
and not (a+b)*c

Mathematical representation of grammars

A grammar G is a 4-tuple G = (V, Σ, S, R) where

‣ V is a finite, nonempty set of nonterminals, also called variables

‣ Σ is an alphabet of terminal symbols

‣ S ∈ V is the start nonterminal

‣ R is a finite set of production rules

(Terminal symbols are distinct from nonterminals)

In English, we might have nonterminals like NOUN, VERB, NP, etc.

We often write nonterminals in upper-case and terminals in lower-case

Production rules

Nonterminals are expanded using production rules to sequences of terminals
and nonterminals

A production rule looks has the form  

A → " 

where A is a nonterminal and " is a (possibly-empty) word over Σ ∪ V

Here's an example for Scheme  
EXP → (if EXP EXP EXP)

This says that wherever we have an expression, we can expand it to an if-then-
else expression which starts with (followed by if and then three more
expressions and lastly)

Example grammar for arithmetic

EXP → EXP + TERM 

EXP → TERM 

TERM → TERM * FACTOR 

TERM → FACTOR 

FACTOR → (EXP)  
FACTOR → number  

Compact form:

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR  

FACTOR → (EXP) | number

Derivations

A derivation with a grammar starts with a nonterminal and replaces nonterminals
one at a time until only a sequence of terminals remains

A left-most derivation is a derivation where the nonterminal replaced in each
step is the left-most nonterminal

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM
 EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

⇒ 3 + FACTOR * FACTOR

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

⇒ 3 + FACTOR * FACTOR

⇒ 3 + 4 * FACTOR

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Derivation example
Left-most derivation of 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

⇒ 3 + FACTOR * FACTOR

⇒ 3 + 4 * FACTOR

⇒ 3 + 4 * 50

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR 

FACTOR → (EXP) | number

Parse tree
Corresponds to the left-most derivation

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

⇒ 3 + FACTOR * FACTOR

⇒ 3 + 4 * FACTOR

⇒ 3 + 4 * 50

Note that the derived expression is a left-to-right traversal of the leaves

E

E + T

T

F

3

T * F

F

4

50

Parse tree

The structure of the tree encodes the
order of operation

It's clear that we have to evaluate the
4 * 50 before we can add to the 3

E

E + T

T

F

3

T * F

F

4

50

The language generated by a grammar

One nonterminal is designated as the start nonterminal

‣ Typically, this is the nonterminal on the left-hand side of the first production
rule

The language generated by the grammar is the set of words over the terminal
alphabet which can be derived by the production rules, starting with the start
nonterminal

Given our grammar for arithmetic

‣ 1 * (2 + 3) is in the language generated by the grammar

‣ 85 + * 10 is not

Consider the grammar 

S → (S) | [S] | SS | ! 

where (,), [, and] are the terminal symbols and ! represents the empty

string consisting of no symbols

Which of the following are words in the language generated by the grammar?  
1. ()  
2. [()]([])  
3. ([)]

A. None

B. Only 1

C. 1 and 2

D. 1 and 3

E. 1, 2, and 3

42

Why do we care (in this class)?

We're going to start with a (structured) list that represents our programs, exp

(parse exp) is going to parse that list into a tree

(eval-exp tree environment) will evaluate the tree in the
environment

We can represent all of the syntactically valid Scheme expressions MiniScheme
supports on a single slide using a grammar

A convenient shorthand

It's often useful to say that a particular terminal or nonterminal can appear 0 or
more times 

A → xA | !  

where x is either a terminal or nonterminal and ! represents the empty word

Similarly, it's often useful to say that a particular terminal or nonterminal can
appear 1 or more times 
A → xA | x

We write x* or x+ as a shorthand for these constructs

A full grammar for Minischeme

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

